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WHAT DO EPIDEMIOLOGISTS STUDY?

Epidemiologists are vital because they help
paint a picture of what a disease does and

how it can be prevented and treated. They
do this by studying the following elements:

Cause of
the disease

Neighborhood, city, state,
country and global spread

Health impact
of the disease

Disease frequency /g
and patterns \Ng@

~ impact of the disease

Source: Centers for Disease Control and Prevention

“The goal of
epidemiology, very
broadly speaking, is to
understand the patterns
of disease and health
dynamics in populations
as well as the causes of
these patterns, and to
use this understanding
to mitigate and prevent
disease, and to promote
health.”

(Saluthe et al. 2018)



Digital Epidemiology

Broadly speaking, digital epidemiology is epidemiology that uses digital
data.

But more importantly, digital epidemiology is epidemiology that uses
data that was generated outside the public health system, i.e. with data

that was not generated with the primary purpose of doing
epidemiology.

(Saluthe et al. 2018)
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Surveillance of Foodborne lliness and Unsafe Foods
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Abstract

Objectives

Access to safe and nutritious food is essential for good health. However, food
can become unsafe due to contamination with pathogens, chemicals or toxins,
or mislabeling of allergens. Illness resulting from the consumption of unsafe

fnnde< ig a olanhal health nrohlem Here we develan a machine learnine annrnach



People infected with the outbreak strain of Sa/monella Newport

by date of illness onset*

FDA Recall
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(Simplified) Recall Process
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1,297, 156

Amazon reviews for Grocery & Gourmet Food products

5,149

Reviews for recalled products

0.4%

Percentage of reviews




(a) (b)

Monthly review counts for recalled and non-recalled products Rating distribution for recalled and non-recalled products
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Figure 3. Features of Amazon reviews for the study period. Temporal trends (a) and distribution of customer ratings (b) of Amazon reviews.
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Breakdown of Reasons for Recalled Products

Faulty Manufacturing & Packaging

Unhealthy Manufacturing Conditions

Presence of Foreign Materials

Unapproved Chemicals & Unsafe Levels

Contamination with other Monocytogenes

on with Salmonella, Fungi, Mold

0 500 1000 1500 2000
Number of Products Recalled



6000 Reviews were manually annotated by
three labelers

1. Review implies that consumer fell sick/had allergic reactions or has
labeling errors

2. Review implies that the product expired or looks/tastes foul and
should be inspected

3. Review does not imply that the product is unsafe
4. Review cannot be categorized to the above three categories

352 reviews out of 6000 in Category 1



Example Reviews

“I took the pills as described on the label, but after a few days the pills
started upsetting my stomach real bad and made me nauseas”

“I'am ANGRY with this company!!!l ... The label does NOT list lemon
juice as an ingredient... | contacted the company via Facebook. Their
answer, Unfortunately, there has been an error on our packaging which
left the lemon juice concentrate off of the ingredient panel on a few
pouch production runs...”



Table 2. Performance of the various machine learning approaches employed for identifying unsafe food products

Classifier description Precision Recall F1 score
Linear SVM (Feature selection using Chi® k = 500) 0.61 0.64 0.62
Multinomial Naive Bayes (Feature selection using Chi?, k = 500) 0.66 0.66 0.66
Weighted logistic regression (Feature selection using Chi?, k = 500) 0.58 0.74 0.65
Weighted logistic regression (Feature selection using Chi”, k = 1000) 0.64 0.71 0.67
Weighted logistic regression (Feature selection using mutual information, £ = 1000) 0.60 0.68 0.64

Weighted logistic regression with SMOTE (ratio = 1: 5) (tested on real data points only) 0.62 0.68 0.65

Weighted logistic regression with SMOTE (ratio = 1: 3) (tested on real data points only) 0.62 0.71 0.66

Weighted logistic regression with SMOTE (ratio = 1: 2) (tested on real data points only) 0.62 0.70 0.66
) I )

Weighted logistic regression with SMOTE (ratio = 1: 1) (tested on real data points only 0.63 0.66 0.64

BERT (epoch = 10, max sequence length = 128) 0.76 0.67 0.71
BERT (epoch = 10, max sequence length = 128) with focal loss for dealing with imbalanced data (x = 0.915, y = 35) 0.75 0.74 0.73
BERT (epoch = 20, max sequence length = 256) 0.79 0.67 0.72
BERT (epoch = 30, max sequence length = 256) 0.78 0.71 0.74
BERT (epoch = 30, max sequence length = 256) with focal loss for dealing with imbalanced data (x = 0.915, y = 35) 0.77 0.71 0.74

s " a o 3 s vow " s - a
BERT is the best performing classifier. Chi~ refers to Chi-square. The accuracy ([true positives + true negative]/total reviews), precision (also known as positive
predictive value = true positives/predicted positive condition), recall (also known as sensitivity = [true positive/[true positives + false negatives]), and Fl-score
(the harmonic mean of the precision and recall) are discussed.



Implications

* The World Health Organization estimates that in 2010, 600 million
people experienced illness due to contaminated food, globally.

 Early identification means regulatory organizations and companies
can take appropriate actions to stop the sale of these products.

* Limit the occurrence of large foodborne disease outbreaks.



The Built Environment and
Obesity in the US
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Prevalence' of Self-Reported Obesity Among
U.S. Adulits by State and Territory, BRFSS

fPrevalence estimates reflect BRFSS methodological changes started in 2011.
These estimates should not be compared to prevalence estimates before 2011.

2011 2012 2013 2014 2015 2016 2017 2018 2019

<20%
20%-<25%
|| 25%-<30%
B 30%-<35%
B >

i ‘ Insufficient data*

*Sample size <50 or the relative standard error (dividing the standard error by the prevalence) 230%.



There is widespread
disparity in obesity
prevalence and other health
‘ indicators not only at
s cchll.mgme.ggg.,' Toga national level but also within
| | A LB ago Hartoy a city. Imagine walking 15
minutes in a city and ending
up in an area with 20 years
lesser life expectancy than
you starting point.
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Data Sources for Factors Affecting Obesity

Urban Factors that Might Influence
Overweight and Obesity
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Data Sources for Factors Affecting Obesity
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Experimental Settings

* Locations: Los Angeles, California; Memphis, Tennessee; A ) AMERICAN
i : &Y,/ COMMUNITY
San Antonio, Texas; and Seattle-Tacoma-Bellevue, ¢ B X" SURVEY

Washington (1695 census tracts) K CENSUS BUREAL

* Explanatory Variables: 9

* Built Environment: 150000 Google Maps satellite images
* Places of Interest(POI) : Google POI data at corresponding

locations r
* Response Variable:

« Obesity Prevalence: Census-tract level data from 500 Citi TN
Pro?élcty revalence: Census-tract level data from ities EDD EltlBS

Google Maps

| ocal data for better Iwﬂlth



Modelling Approach

Predictive
Model

e
*
B

‘ Feature Maps
for Domain B

Transfer of Knowledge



Predictive Modelling

* We applied Elastic Net a regularized regression method that
eliminates insignificant covariates, preserves correlated variables,
and is well suited to the high-dimensional (n = 4096) feature vectors.

» After regularization, we retain 125 features in the model.

* We perform 5-fold cross-validation as well as out-of-sample
regression analysis



E] Memphis, Tennessee

Built Environment features explain
73.3% and 61.5% variation in
obesity prevalence for Memphis
and San Antonio respectively in

| |  —
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San Antonio, Texas

Places of Interest features explain
43.2% and 43.0% variation in
obesity prevalence for Memphis
and San Antonio respectively in
out-of-sample estimates.
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E] Seattle, Washington
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Built Environment features explain
55.8% and 56.1% variation in
obesity prevalence for Sea-Tac-Bel
and Los Angeles respectively in out-
of-sample estimates.

Places of Interest features explain
14.0% and 29.2% variation in
obesity prevalence for Memphis
and San Antonio respectively in out-
of-sample estimates.
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Neighborhood Looking Glass:
Estimation of Health Indicators
from Google Street View

(Nguyen et al. 2018, Javanmardi et al. 2020)




Interpretable Obesity Estimation
from Built Environment

.I.‘
.I.‘
f Regression Obesity
fz Model Estimate
f

Binary indicator
variables

o

=

Image Feature Extractor
(Finetuned)

Finetuned deep learning models are used to label Google Street View images with
built environment features which are used for obesity estimate.

This allows for interpretable estimation and is helpful for public policy-making.



Experimental Settings

* Locations: Chicago, Salt Lake City, Charleston

* Nguyen et al. 2018 use following binary features:
1. Green Street (Trees/landscaping comprises at least 30% of the image)
2. Building Type (Single-family detached house vs. other)
3. Presence of Crosswalk (Yes vs. No)

* VGG-16 was finetuned for classification on 14000 annotated images.
* Achieved 85.40%, 84.59% and 93.03% accuracy on 1, 2, 3 respectively

* Sociodemographic characteristics of each neighborhood were added to
adjust for potential confounding



Table 1 Descriptive characteristics of neighbourhood characteristics
Green Crosswalk  Commercial/
streets present apartment building
Mean (SD) Mean (SD) Mean (SD)
Salt Lake City 59.0(49.2) 8.0(27.1)  38.5(48.7)
Chicago 2P Chicago ZIP . . .
orpsto® — Chicago, lllinois 71.2(453) 225(41.8) 55.8(49.7)
- e Charleston, West Virginia ~ 78.6 (41.0)  3.4(18.1)  44.9(49.7)
N 226875 150300 53360

Neighbourhood characteristics derived from street images collected between December
2016 and February 2017 from Google's Street View Image API.

Charleston had highest % of green streets (79%).

Chicago had most commercial buildings (56%) and
streets with crosswalks (23%).

Crosswalks Commercial Buildings Green Streets

Zip Code Distribution of Built Environment Characteristics in Chicago, lllinois. _
Percentage of blacks was correlated with more

crosswalks and more commercial buildings,
converse for Hispanics.



Table 2  Built environment predictors of adult obesity and diabetes,*
Salt Lake City

Obese Diabetes
Built environment Prevalence ratio Prevalence ratio
characteristics (95%CI)t (95% ClI)t
Green streets
Third tertile (highest) 0.73 (0.63 to 0.85) 0.86 (0.77 to 0.96)
Second tertile 0.99 (0.92 to 1.06) 1.03 (0.97 to 1.08)
Crosswalks
Third tertile (highest) 0.76 (0.69 to 0.85) 0.87 (0.80 to 0.95)
Second tertile 1.02 (0.97 t0 1.07) 1.01 (0.95 to 1.06)
Commercial buildings/apartments
Third tertile (highest) 0.79 (0.67 to 0.94) 0.81 (0.67 to 0.98)
Second tertile 0.93 (0.86 t0 1.01) 0.91 (0.84 to 0.99)
N 7127737 736218

*Data source for health outcomes: Utah Population database.

tAdjusted Poisson models were run for each outcome separately. Models controlled for
individual-level age, sex, race, ethnicity, education and marital status as well as zip code-
level population density, percentage of the population 65 years and older, percentage of
Hispanics, percentage of blacks, median household income and percentage of
householder living in current residence for 5 years or more. Built environment
characteristics were categorised into tertiles, with the lowest tertile serving as the
referent group. SEs were adjusted for clustering of values at the zip code level.

Tertile = Any of the three groups containing
a third of the population

Lowest tertiles serve as referent group.

More green streets, crosswalks and
presence of commercial buildings were
associated with lower individual obesity
prevalence.

Similarly for diabetes prevalence.

Findings are consistent with prior literature.
Mix land uses, connected streets, higher
residential density and attractive scenery
promote physical activity.



Multi-tasking for Classification & Estimation
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(Javanmardi et al. 2020)

In a similar study, the image feature extractor is jointly finetuned for classification of binary features as well as
estimation of obesity prevalence.

This approach explains up to 70.40% variation in prevalence as compared to the previous approach which loses
information when aggregating over all locations in a census tract and explains only 6%.



Scaling to entire country

* Following pilot studies, these approaches were scaled to locations in
the entire country for more built environment features.

* Relied on Google Vision API to gather labels.
* Approximately 15 days to label 16 million Google Street View images

* Built environment features:
* Presence of highland
* Rural vs. Urban area
* Presence of grasslands



Highways (Tertiles)
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Main Outcomes

* Economic disadvantage was related to fewer highways, more rural
areas, and fewer grasslands.

* Presence of highways was beneficial for self-rated health, diabetes,
premature mortality, physical distress, mental distress, physical
inactivity, and teen births but was non-significant for obesity.

* Counties with higher percentages of rural areas had worse health in
terms of higher obesity, diabetes, fair/poor self-rated health,
premature mortality, physical distress, physical inactivity and teen
birth rates but had lower rates of excessive drinking.




Firearm Violence: Case-control
Study using Satellite Images

(Jay et al. 2020)




U.S. GUN DEATHS CONTINUED TO CLIMB IN 2017
THE

The United States saw nearly 40,000 firearm fatalities last year, THA[:E
an uptick driven largely by an increase in suicides.

40,000 deaths + 39,773 12.0 deaths per 100,000 people «12.0

All firearm deaths
30 : 9.0

Firearm death rate

23,854 | i
Firearm suicides Firearm suicide rate 69
20 > 6.0

10

0 0.0
2000 2004 2008 <2012 2016 2000 2004 2008 2012 <2016

Source: COC WONDER Underlying Cause of Death counts and oge-adjusted rates




Alcohol Outlets and Firearm Violence

Alcohol outlets (AOs) = Bars, Restaurants and Beer stores

Many studies have found positive
association between the density of Aos and ;
rates of violence at the neighborhood level O

________________

(THIRD VARIAELE)

=

Place/Built environment is a potential S '
confounder. / \

Researchers must control for potential NDEPENDENT
confounders. VARIABLE | -------n- >

Spurious
correlation

DEPENDENT
VARIABLE




Matching Cases and Controls
on Visual Appearance

Case Query
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Index case Matched control

Case

Control

Map of Case (n=1609) and Control (n=1609) locations




Results

Table 1 Characteristics of case locations, matched controls and
unmatched locations

Mean (SD*)
Cases Controls Unmatched
Variable (n=1609) (n=1609) (n=21190)
Vacant lots (n) 2.5 (4.5) 2.1 (4.5) 1.1 (3.3)
Street trees (n) 3.6 (4.9 4.0 (5.2) 4.6 (6.1)
Commercial land use (parcels/block)
Same block 2.2 (4.9) 1.4 (2.8) 0.9 (2.7)
Within one block, mean 2.1(2.3) 1.8 (2.3) 1.5(2.3)
Within two blocks, mean 1.7 (1.4) 1.5(1.2) 1.2 (1.2)

*SD reported for continuous variables only.

tCalculated using inverse distance weighting from block group centroids, following
Branas et al’

$Calculated as kernel density of drug-related police incident reports, mean-centred
and scaled by 5D over the full dataset.

* The case—control matching process

substantially improved balance on
each of the potential confounders,
compared with case locations to
matched controls than to
unmatched units.

These findings strengthen the
argument for a causal association
between AOs and violence, even
after accounting for differences in
the physical and social
environment surrounding those
institutions.
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Use of Deep Learning to Examine the Association of the Built
Environment With Prevalence of Neighborhood Adult Obesity

Adyasha Maharana, M5; Elaine Okanyene Nsoesie, PhD

Abstract

IMPORTANCE More than one-third of the adult population in the United States is obese. Obesity
has been linked to factors such as genetics, diet, physical activity, and the environment. However,
evidence indicating associations between the built environment and obesity has varied across
studies and geographical contexts.

OBJECTIVE To propose an approach for consistent measurement of the features of the built
environment (ie, both natural and modified elements of the physical environment) and its
association with obesity prevalence to allow for comparison across studies.

DESIGN The cross-sectional study was conducted from February 14 through October 31, 2017 A
convolutional neural network, a deep learning approach, was applied to approximately 150 000
high-resolution satellite images from Google Static Maps APl (application programing interface) to
extract features of the built environment in Los Angeles, California; Memphis, Tennessee; San

Antonio. Texas: and Seattle (reoresenting Seattle. Tacoma. and Bellevue). Washington. Data on adult

Key Points

Question How can convolutional neural
networlks assist in the study of the
association between the built

environment and obesity prevalence?

Findings In this cross-sectional
modeling study of 4 US urban areas,
extraction of built environment (ie, both
natural and modified elements of the
physical environment) information from
images using convolutional neural
networks and use of that information to
assess associations between the built
environment and obesity prevalence
showed that physical characteristics of a
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