

Hi! My name is Adyasha Maharana

From Odisha, India

My research spans ..

- Multimodal models
- Story visualization \bullet

- Question answering
- Data pruning

Conversational agents

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

5th year PhD student at UNC

Evaluating Very Long-Term **Conversational Memory** of LLM Agents

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, Yuwei Fang

Why do LLMs need memory?

TECHNOLOGY

GPT-4 Has the Memory of a Goldfish

Large language models know a lot but can't remember much at all.

By Jacob Stern

LLMs have a finite input length and are bad at memorizing facts

Information beyond pretrained Knowledge sources

My location is **Seattle** now

Saving and reusing information in virtual friend apps

	12:19 🌲 🖲 🚥 🏹 🖪	N 🕅 🔌 ⁵ 🕯
< 5	My Al	
ME Sugge	est places to eat near me	e.
MY AI There you're recom for Ar Desse choice great	are a lot of great option a in the mood for Italian mend Vito Restaurant. I nerican food, Bud's Fam erts or Society Kitchen an es. If you want Asian foo option.	ns near you! If food, I'd If you're looking nous Deli & re both good d, Blossom is a
Y	Vito Restaurant Italian Restaurant • 336 ft	♡ 1
	Bud's Famous Deli Desserts American Restaurant + 463	& ♥ 3
	Blossom Asian Restaurant + 230 ft	♡ 8
		104/0 55

Suggestions are for Santa Monica

Memory-based Models

- Format [Key, Value, Triple, Summary]
- Static/Dynamic
- Scalability

- Non-parametric [kNN,
 FAISS, similarity]
- Parameterized [Dense Retriever, training]
- Query Format

- Modified Attention
- Prompt
- Frozen LLMs
- Adapters/LoRA

Memory-based Models: Evaluation

Previous Inputs

- I am in Seattle
- I like concerts
- I like rock music

Current Input

Suggest things to do near me

Output

Here's a rock concert in Neptune Theatre you might enjoy..

A. Is the memory saved accurately?

We propose to use an exhaustive list of probing questions to evaluate the saved memories. - I like rock music.

User likes rock music.

- I have lost interest in rock.

User does not like rock music anymore.

From today.

User can surf. User is wearing a black wetsuit. User is riding a white surfboard.

Probing Question

Does User like rock music?

No.

Does User surf?

Yes.

B. Is the memory retrieved correctly?

Relatively well studied in literature.

Important for interpretability and control.

Evaluated using Oracle memory.

User does not like rock music anymore.

Question Does User like

Does User surf? User can surf. User is wearing a black swimsuit. User is riding a white surfboard.

C. Can the LLM use memory properly?

Focus on a few foundational capabilities.

Information I visited New York two years ago. Α picture from one of my older

Aggregation of

I am visiting my aunt in Canada.

travels

Which places has User visited?

New York, France, Canada.

Reasoning over Time May 2, 2019: I was promoted to head barista at Cafe Aromatica. Oct 10, 2019: I received an offer to work at a coffee roastery. I am taking the job. Oct 29, 2019: Moved to SF for new job. Where was User working in June 2019?

Cafe Aromatica.

refrigerator.

today?

You can try making Sriracha Fried Rice

Complex/Open-ended Reasoning

I like spicy food

A picture of my

What can I cook

C. Can the LLM use memory properly?

Focus on a few foundational capabilities.

Long-range Causal Reasoning

I participated in a Counter Strike gaming tournament yesterday.

...

I started hanging out with some friends I met at the tournament.

Summarize the events in User's life.

User started hanging out with friends he met at the Counter Strike tournament that he participated in.

Contextual Response Generation

Meet Daisy, our newest family member!!

Daisy seems sick, where should I take her?

• • •

Here's the number of a nearby vet that is open right now. Try making an appointment: xxxxx

Conversational Dataset Collection

I can play the guitar and the piano and I also like to sing.

I can only sing when I drink, but I don't like to do that anymore.

I m not a big drinker either. Do you have a job?

Construction, like my dad. What do you do when you aren't being a rock star

Nice! I work as a custodian. Not too glamorous but it pays the bills haha

feel ya. You gotta do what you gotta do.

Exactly. Do you have other hobbies besides biking?

Multi-session Chat (MSC) Dataset [3]

Created by crowdsourcing workers, five sessions (5) and summaries

Crowdsourced Data

- Real-world dialogues
- **Real-world events**
- Personalized images
- Workers may lose interest over X long-term collection and diverge
- Cannot pre-assign diverse X personalities
- May not result in the data we want X

Conversational Dataset Collection

0 6 7 Sure! I will generate a hypothetical conversation for 'session_4' based on the previous conversations and incorporate new facts while maintaining the style of each speaker. I will also update the personalities and save them under 'session_4_end_summary'.

Here is the hypothetical conversation in 'session_4':

Extended MSC Dataset

Created using ChatGPT

Generative Data

- Can simulate long-term conversation (e.g. over a year or more)
- Can pre-assign diverse personalities
- Can follow explicit instructions for the data we want
- Dialogues are too formal and overly positive X
- Current multimodal LLMs are not good X
- Inconsistent conversations due to lack of X memory

Hybrid Crowdsourcing + LLM Dataset

Combine the merits of both to create a good multimodal conversational dataset

Multiple sessions of LLM conversation followed by crowd-sourced filtering

Relevant Ideas

Generative Agents: Interactive Simulacra of Human Behavior

Joon Sung Park Stanford University Stanford, USA joonspk@stanford.edu

Meredith Ringel Morris Google Research Seattle, WA, USA merrie@google.com

Joseph C. O'Brien Stanford University Stanford, USA jobrien3@stanford.edu

Percy Liang Stanford University Stanford, USA pliang@cs.stanford.edu

Carrie J. Cai Google Research Mountain View, CA, USA cjcai@google.com

Michael S. Bernstein Stanford University Stanford, USA msb@cs.stanford.edu

Silin Gao¹, Beatriz Borges^{1*}, Soyoung Oh^{1*}, Deniz Bayazit^{1*}, Saya Kanno², Hiromi Wakaki², Yuki Mitsufuji², Antoine Bosselut^{1†} ¹NLP Lab, IC, EPFL, Switzerland, ²Sony Group Corporation, Tokyo, Japan ¹{silin.gao,beatriz.borges,soyoung.oh,deniz.bayazit}@epfl.ch ²{saya.kanno,hiromi.wakaki,yuhki.mitsufuji}@sony.com ¹antoine.bosselut@epfl.ch

> name": "Lauri Winograd", "age": 52, gender": "female", persona": { "characteristics": ["Diligent", "Organized", "Pragmatic", "Cautious" "routines_and_habits": ["Obsessive-compulsive about tidiness", "Early riser", "Strict fitness regime" "goals_and_plans": ["Set new career goals", "Travel the world", "Make the most of retirement" "experiences": ["Retired accountant", "Lifelong learner"

"quirks": ["Skepticism of new technologies", "Fear of change"

Conversation Question:

Answer

Ouestion

Answer

Question

Answe

Answer

for its residents

residents and infrastructure

Visual Instruction Tuning

Haotian Liu^{1*}, Chunyuan Li^{2*}, Qingyang Wu³, Yong Jae Lee¹ ¹University of Wisconsin–Madison ²Microsoft Research ³Columbia University https://llava-vl.github.io

There is a movie theater that displays the show times above the doors A red fire hydrant is deep in the snow. The fire hydrant is in the snow near a recently plowed sidewalk. This city has had a very hard winter with sno A hotel for dogs in the snow in winter.

What color is the fire hydrant in the image?

The fire hydrant in the image is red.

Is the fire hydrant fully covered by snow or partially visible?

The fire hydrant is partially visible, with a significant portion of it covered by the deep snow

What is the condition of the sidewalk near the fire hydrant?

The sidewalk near the fire hydrant has been recently plowed, so it is relatively clear of snow compared to the surrounding area.

Question: What does the image suggest about the winter season in the city?

The image suggests that the winter season in the city has been quite harsh and challenging. The significant snow accumulation seen in the image indicates that the city has experienced heavy snowfall, which can lead to various difficulties and disruptions

For instance, the deep snow covering the fire hydrant could potentially hinder its accessibility in case of emergencies, which poses safety concerns. The recently plowed sidewalk implies that the city's maintenance crews have been actively working to keep the walkways clear and safe for podestrians, but the sheer amount of snowfall might make it difficult to keep up with the yous snow removal efforts

rmore, such extreme winter conditions can impact transportation, leading to traffic issues, delays in public transit, and increased risks of accidents due to slippery roads. It can also cause problems for businesses and schools, as people might face challenges commuting to work or attending classes. Additionally, the heavy snow can put extra strain on infrastructure, such as roofs and power lines, increasing the likelihood of structural damage or power outages

In conclusion, the image of the red fire hydrant deep in the snow and the recently plowed sidewalk suggest that the city has faced a particularly severe winter season, with substantial snowfall that has likely caused various challenges and disruptions for its

Table 11: One example used in in-context-learning to construct visual conversation data.

Step 1: Pre-define persona

Use few-liner personas from MSC dataset to create detailed personas

Step 2: Create event graphs

Use detailed persona to create event graphs

Persona & Event Graphs: Example

Prompts are designed to generate positive as well as negative events. Events are generated in an iterative fashion.

Jack has a phone interview with the representatives from Gamma Games.

> 18 Nov 2023

Step 3: Memory system

Saved as a database and retrieved using encoder-decoder arch.

Always included in the prompt for generating conversations.

Observations: Example

Conversation (input)

1:56 pm, May 8, 2023

Hey Joanna! Long time no see! What's up? ..

Hey Nate! Long time no see! I've been working on a project lately - it's been pretty cool. What about you any fun projects or hobbies?

I won my first video game tournament last week - so exciting!

Wow Nate! Congrats on winning! Tell me more - what game was it?

Thanks! it's a team shooter game.

Wow, great job! What was is called?

The game was called Counter-Strike: Global Offensive, and me and my team had a blast to the very end!

...

Sounds like a fun experience .. if I'm not into games.

Observations (output)

Joanna

- Joanna has been working on a project recently. .
- Joanna enjoys writing, reading, watching movies, and exploring nature as hobbies.
- Joanna is into dramas and romcoms when it comes to movies.
- Joanna recommends a romantic drama movie that is all about memory and relationships.
- Joanna watched the recommended movie around 3 years ago and even owns a physical copy.

Nate

- Nate won his first video game tournament last week. ٠
- The video game Nate won the tournament in is called Counter-Strike: Global Offensive.
- Playing video games and watching movies are Nate's main hobbies.
- Nate enjoys action and sci-fi movies.
- Nate loves watching classics.

Step 4: Multimodal Behaviour using LLMs

Bringing it all together

Persistent Issues

- Often, the images are generic and do not contain much multimodal information that we can ask questions about.
- Inconsistencies due to incorrectly retrieved information when generating next responses
- LLMs are bad at dialog repair → they kinda 'go with the flow' → skip events assigned to them
- On a similar note, LLMs are 'Yes Mans', they will say yes to most questions, at the cost of being inconsistent

Manual Editing

Remove or substitute irrelevant images

.. Oh, and I'm planning my solo trip to five countries! Exciting stuff.

> Wow, Debra! 5 countries, awesome! Where're you headed? Need help planning or any tips? Count me in!

X

Edit inconsistent dialogs

My grandma sent me a postcard from Paris years ago.

... Where'd you get it?

Thanks Joe! | got the postcard from an antique shop...

Thanks Joe! My grandmother got the postcard from an antique shop...

Edit dialogs to follow event graph

Event: Joseph participates in a photography workshop and improves his photography skills.

fun for the weekend?

.. Anything new at work or

.. I did <u>a photoshoot</u> last Friday and learned some new tricks...

.. I participated in a photography workshop last Friday and learned some new tricks....

LoCoMo Long-Term Conversational Dataset

Conversation Statistics	# Counts
Total. # conversations h .	50
Avg. # sessions k . in conversation h	19.3
Avg. # turns j . in session k	15.8
Avg. # tokens. conversation h	9,209.2
Avg. # tokens. dialogue h_{k_j} of turn j in session k	30.2
Avg. # tokens. observation o_{k_j} of turn j in session k	18.2
Avg. # tokens. summary w_k of session k	127.4

QA Annotations Guidelines: Example

(new) Questions that require aggregation of information (supported by edit scenarios 8a, 8b): These are the guestions whose answer requires aggregation of information from different sessions. The information can be about anything, ranging from interests, personal life, names of people, professional life, habits, day-to-day life etc. about the speakers. For example,

> Hey Tiffany! What's been going on? Been super busy since we last talked. Just got back from France and it was awesome! Everything was stunning. Can't wait to catch up! 😊

Cool! You liked the planetarium? I'm going to Japan next month - can't wait to explore the culture and check out the temples and shrines. Any trips you have coming up? D1:8

Question: Which countries has Joseph travelled to? **Answer: France, Japan** Evidence: D4:1, D1:8

D4:1

Aggregation of information can also happen from images. For example,

Yeah, I've done crosswords and sudoku. They're tricky and addictive. Your finished crossword looks great, Tiffany.

Question: What kind of puzzles does Joseph solve? Answer: jigsaw puzzles, crosswords and sudoku

QA Task

Five QA categories

Annotated:

- Multi-hop reasoning
- Commonsense & world knowledge reasoning
- Temporal reasoning

Generated:

- Single-hop reasoning
- **Adversarial**

Evaluation Metric: partial F1 score

QA Benchmark Statistics					
# questions. single-hop retrieval	2,705 (36%)				
# questions. Inutr-nop retrieval # questions. temporal reasoning	1,547 (20.6%)				
# questions. open domain knowledge	285 (3.9%) 1 871 (24.0%)				
Total. # questions.	7,512				

anticos da ference da en	
(1) Question A	Answering
Based on the given context, write	a short answe
Single-Hop Reasoning	Commons
Last night we celebrated my daughter's birthday.	I'm a fan of and Mozart
Q: Whose birthday did X celebrate?	music like E
A: daughter	Q: Would Sea
Multi-Hop Reasoning	A: Yes; sh
visited New York two years ago.	1
A picture from one of	Sep 5 2020:
my older travels	Q: When di
Q: Which places has X visited?	(A) Sep 5, 2
A: New York, Horseshoe Canyon	A : (B
Temporal	Reasoning
July 10, 2022: I actually started on a	book recently s
Oct 6, 2022: I finished up my writing	for my book la

Q: How long did it take for X to finish writing the book?

g Task

er for the question.

ense & World Know.

both classical like Bach as well as modern Ed Sheeran's "Perfect".

X likely enjoy "The Four sons" by Vivaldi?

ne likes classical music.

Adversarial

I'm learning the piano.

id X start learning violin? 2020 (B) Not answerable

) Not answerable

since my movie did well!

ast week..

A: three months

Event Summarization Task

Event graphs are used as ground truth summaries.

Timestamps are the same as session dates.

Challenges include long-range temporal and causal reasoning.

Evaluation Metric: ROUGE, FactScore-F1

(2) Event Summarization Task 21 January, 2022 I won my first video game tournament last week - so exciting! The game was called Counter-Strike: Global Offensive ... 23 January, 2022 I start to hang out with some people outside of my circle at the tournament. 24 March, 2022 I'm currently participating in the video game tournament again and it's INTENSE! tournament.

Summarize the significant events that have occurred in X's life.

21 Jan: X wins his first video game tournament playing Counter-Strike: Global Offensive with a team.

23 Jan: X starts hanging out with new people he met from outside his circle at the Counter Strike tournament.

24 Mar: X participates in another Counter Strike

Multimodal Dialog Generation Task

(3) Multimodal Dialog Generation Task

.. Trying out different flavors like chocolate, raspberry, and coconut has been a blast!

Sounds delicious! Are you only trying dairy-free options?

Please generate conversation with appropriate image.

Yeah.. made these dairy-free chocolate coconut cupcakes...

Multi-modal Dialogue Generation Statistics

Avg. # images. in conversation h

32.3

Challenges include retrieval of context and utilizing retrieved context correctly.

Evaluation Metric: MMRelevance, similar to CLIPScore

Experimental Setup

Baseline Models for QA

- Long-context Models
 - Gpt3.5-16k 0
- Base LLMS
 - GPT3.5 Ο
 - GPT4
 - Llama2-70B (instruction-tuned) Ο
 - Mistral-7B (instruction-tuned) Ο
- Base LLMS + Retrieval
 - Retriever: Dragon Ο
 - Database type Ο
 - Observation
 - Summary
 - raw dialog

Baseline Models for Summary

- Long-context Models • Gpt3.5-16k
- Base LLMS GPT3.5 0
 - GPT4 0
 - Llama2-70B (instruction-tuned) Ο
 - Mistral-7B (instruction-tuned) Ο

Baseline Models for Dialog

- **Base MLLMS**
 - Ο
- - Ο
 - Ο

MiniGPT-5

Base MLLMs + Retrieval Retriever: Dragon Database type: Summary observation

Results from QA Task

Category	Model	Context Length	Answer Prediction (F1)					
		8	Single Hop	Multi Hop	Temporal	Open Domain	Adversarial	Overall
Human	Human	-	95.1	85.8	92.6	75.4	89.4	87.9
Base	Mistral-Instruct-7B Llama-2-Chat-70B GPT-3.5-turbo GPT-4-turbo	8K 4,096 4,096 4,096	10.2 19.7 29.9 23.4	12.8 14.4 23.3 23.4	16.1 13.3 17.5 10.4	19.5 15.9 29.5 24.6	17.0 22.1 12.8 70.2	13.9 17.9 22.4 32.1
Long context	GPT-3.5-turbo-16K	4K 8K 12K 16K	31.7 38.8 51.1 56.4	25.4 31.2 40.4 42.0	16.8 21.0 25.0 20.3	27.6 35.0 36.5 37.2	13.1 8.4 6.4 2.1	24.1 25.2 33.5 37.8

Table 2: Question answering performance of Base and Long-context models. Optimal performance is in bold. Results are based on F1-score for answer prediction; higher is better.

Results from QA Task with Retrieval

		Answer Prediction (F1 score)						Recal	Accuracy (I	R @ <i>k</i>)			
Retrieval Unit	top-k	Single Hop	Multi Hop	Temporal	Open Domain	Adver- -sarial	Overall	Single Hop	Multi Hop	Temporal	Open Domain	Adver- -sarial	Overall
None		29.9	23.3	17.5	29.5	12.8	22.4	-	-	-	-	-	-
Dialog	5	42.9	19.4	21.3	35.8	31.9	31.7	66.2	34.4	89.2	38.5	45.7	58.8
	10	46.3	26.8	24.8	37.5	29.8	34.6	72.8	247.4	97.3	53.8	54.3	67.5
	25	48.1	36.1	26.2	43.4	23.4	35.8	87.5	64.1	97.3	67.9	69.1	79.9
	50	50.9	37.2	24.6	38.3	17.0	34.8	90.4	75.5	97.3	67.9	77.7	84.8
Observation	5	44.3	30.6	41.9	40.2	44.7	41.4	52.9	40.1	81.1	38.5	29.8	49.6
	10	42.2	30.5	42.1	41.9	36.2	38.8	57.4	53.1	83.8	46.2	41.5	57.1
	25	44.6	33.2	41.8	41.9	27.7	38.0	71.3	63.8	83.8	66.7	45.7	66.0
	50	44.0	34.5	41.1	41.9	27.7	37.8	72.8	73.2	83.8	74.4	56.4	71.1
Summary	2	34.6	15.7	26.9	26.5	36.2	29.9	68.4	39.6	56.8	50.0	73.4	61.5
	5	36.6	16.6	31.0	34.7	38.3	32.5	81.6	57.0	70.3	60.3	86.2	75.1
	10	34.5	14.7	29.3	31.6	40.4	31.5	93.4	82.3	91.9	80.8	94.7	90.7

Table 3: Question answering performance of RAG-based GPT-3.5-turbo-16k. Optimal performance is in bold. Results are based on F1-score metric for answer prediction and recall@k for recall accuracy; higher is better.

Results from QA Task: Takeaways

- LLMs with limited context length face challenges in understanding extremely long conversations due to truncated context windows
- Long-context LLMs can comprehend longer narratives, yet they are prone to generating hallucinations.
- RAG is effective when conversations are stored as observations
- **Time reasoning** and **open-domain knowledge** questions are the most challenging scenarios

LLMs struggle with change of state over time

Question: What is the first sci-fi book Tiffany has read? **Correct Answer**: The Time-Traveller's Daughter GPT3.5 [16k]: The Maze of Time

\checkmark	×	×	×	×	×
1	2	3	4	5	6

#sessions between the two facts

LLMs struggle with attribution

Speaker A

Collects vintage coins

Speaker B

Collects vintage coins, stamps, maps, postcards

Speaker B

Has a favorite vintage postcard from Paris sent by grandmother

Question: What is Speaker A's favorite postcard? **Correct Answer**: There is no information about Speaker A's favorite postcard in the conversation. **GPT3.5** [16k]: Speaker A's favorite postcard is a picture of a vintage coin from Paris.

Question: What is Speaker B's memory about their grandmother? **Correct Answer**: Speaker B's grandmother sent them a vintage postcard from Paris.

GPT3.5 [16k]: A cherished memory for Speaker B about their grandmother is receiving a vintage coin from her as a gift.

LLMs struggle with coreference resolution over long context

	That's awesome! I had no idea quantum computing could do that. I found a book called "The Time-Traveller's Daughter" wh
D2:8	It's my first foray into sci-fi. I am reading a few pages before going to bed most nights. Do you have anything fun coming up?

That sounds great, Joseph! I joined a book club recently and introduced them to the book I was reading, they loved it. We also read this sci-fi D10:4 novel "The Maze of Time". It was interesting and made me think. Have you ever read any sci-fi books that make you question reality?

Question: Which books has Tiffany's book club read?

Correct Answer: The Time Traveller's daughter, The Maze of Time, Three-Body Problem Evidence: D2:8, D10:4, D10:16

GPT3.5 [16k]: The Maze of Time, Three-Body Problem, Dragon Tattoo.

ich looks interesting.

When do models struggle to retrieve context?

No explicit overlap between question and answer

Which science topic did Joseph and Tiffany talk
about?

Quantum computing

Images needing some amount of detailed understanding not covered in caption

Which book does Joseph share with Tiffany?

Dialog context is scattered over many adjacent dialogs, such as question followed by answer

How does Tiffany like to stay motivated?

By using a vision board

Results from Summarization Task

Category	Model	Context Length		ROGUE	FactScore			
		g	ROGUE-1 ROGUE-2 ROGUE-L		Precision	Recall	F1	
	Mistral-Instruct-7B	8K	29.4	7.2	14.1	27.1	19.8	23.0
Base	Llama-2-Chat-70B	4,096	28.1	9.3	14.8	36.3	22.7	28.3
	GPT-4-turbo	4,096	38.8	11.4	20.6	51.6	41.8	45.1
	GPT-3.5-turbo	4,096	41.1	13.5	20.9	45.3	46.5	45.9
Long context	GPT-3.5-turbo-16K	16K	36.2	8.5	16.4	42.3	37.8	39.9

Table 4: Event summarization performance of Base and Long-context models. The optimal performance is shown in **bold**. Results are based on ROUGE and FactScore (Min et al., 2023) metrics; higher is better.

- The use of incremental summarization with gpt-3.5-turbo leads to the highest performance in both recall and F1 score.
- The long-context model does not surpass the base model. •

Results from Summarization Task: Error Types

Error Type	Explanation	Ground truth event or relevant dialogs	
Missing information	Key details about event are omitted because the model fails to make causal and temporal connections over a long conversation.	Joanna submits her third screenplay on loss, identity, and connection to a film contest	
Hallucination	Non-existent details or details from a different event are padded onto an event	 N: 'The gaming party was a great success!' N: ' said they'd want to do it again next month!' N: 'On another note, I made vegan ice cream' 	Na su
Misunder- -standing of dialog cues	e.g., model confuses a light-hearted statement from a speaker as a serious statement	 J: ' these trails that made me feel like writing a drama.' N: ' go together Maybe I'll start to think of a drama myself and write a screenplay' J: 'Haha, now that would be something!' 	Ν
Speaker attribution	Event is attributed to the wrong speaker	Nate invites Joanna to try his homemade lactose-free ice cream.	Joa try
Saliency	Unimportant interactions in the conversation are considered significant by model	<i>N</i> : Hey Joanna, what's been up since we last chatted? How's it going?	Nat

Table 7: Taxonomy of errors in LLM-generated event summaries. Five types of errors predominantly occur in the event summaries generated by LLMs. Examples are based on predictions from gpt-3.5-turbo.

Predicted event

Joanna submits her recent screenplay to a film contest.

ate's vegan ice cream is a huge access and people want to do it again next month.

Nate considers writing his own drama screenplay.

anna invites Nate to her home to her dairy-free ice cream recipe.

te asks Joanna how she has been she they last talked.

Results from Multimodal Dialog Generation Task

Category	top-k	BLEU-1/2	Rouge-L	MM-R
Base	-	57.1 / 34.2	12.4	56.1
+ summary	1	58.2 / 34.1	12.8	56.9
+ summary	2	56.5 / 32.8	12.1	55.1
+ summary	5	56.1 / 32.5	12.0	55.2
<pre>+ observation + observation + observation</pre>	5	59.7 / 35.1	13.6	57.8
	10	59.1 / 34.9	12.8	57.1
	25	58.5 / 34.2	12.0	56.5

Table 6: Multi-modal dialogue generation performance comparison between different training variants of MiniGPT-5. The optimal performance is shown in bold.

Input Conversation Hey Nate, how's it going? ...

... As for me, life's been ok, just taking care of this.

.. Your gaming room looks great have you been gaming a lot recently?

Ground Truth

Gaming has been my focus practicing a lot and even winning a few tournaments. Last week I won my second tournament!

Yeah, James! .. It brings me so much joy to see everyone around here having fun gaming together in our community room.

Top retrieved observations from dialog history

Nate won his first video game tournament last week.

Nate is participating in a gaming tournament next month, which will be his 4th one

Nate enjoys playing for fun at the tournament and will cheer on others even if he loses.

Thanks Joanna! Yeah, ... best part of competitive games is seeing everyone have fun ... at video game tournaments ...

A. Example of a prediction from MiniGPT-5 with and without retrieval-based augmentation

Incorporating context into training enhances performance, with the inclusion of observation as context vielding significantly improved results.

MiniGPT-5 (no RAG)

MiniGPT-5 augmented with observations (k=5)

Prevailing challenge: How to create data for multimodal change of state?

What we want:

Change of state

Multiple values of same attribute

What we have: Standalone images

Prevailing challenge: Real-world vs. semi-synthetic conversations?

Variation in sentiment over time in synthetic conversations

Thank you!